API¶
ntloss.core¶
ntloss.core
¶
AbstractNTLoss
¶
Bases: ABC
Source code in ntloss/core.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
__init__(tokenizer: PreTrainedTokenizer, digit_level: bool = True, reweigh: bool = True)
¶
NTL constructor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer
|
PreTrainedTokenizer
|
Standard HF tokenizer. |
required |
digit_level
|
bool
|
Whether to ensure only digits are considered number tokens, stabilizing training with NTL. Defaults to True. Used for most experiments in the ICML paper. |
True
|
reweigh
|
bool
|
Whether to scale the NTL using the logit weight on number tokens. Defaults to True. NOTE: The ICML paper does not use this option which can lead to incorrect loss if most mass is placed outside of the number tokens. |
True
|
Source code in ntloss/core.py
setup_number_tokens()
¶
Setting up attributes needed by NT loss
Source code in ntloss/core.py
__call__(*args, **kwargs)
¶
reweigh_fn(logits: Tensor, loss: Tensor, number_token_positions: Tensor) -> Tensor
¶
Scale the NT loss element-wise using the logit weight on number tokens. NOTE: This reweighing ensures that if ground truth is a number token but most probability mass is on text tokens, the loss will be higher than the worst possible number token. This is an edge case in practice.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logits
|
Tensor
|
3D Tensor of shape BS x T x V. |
required |
loss
|
Tensor
|
1D Tensor over all number tokens in batch. |
required |
number_token_positions
|
Tensor
|
2D Tensor of shape BS x T indicating for which tokens the NT loss was computed. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A 1D Tensor over all number tokens in batch with the scaled NT losses. |
Source code in ntloss/core.py
NTLossDotProduct
¶
Bases: AbstractNTLoss
Class for NT losses that produce a token-wise numerical output.
Source code in ntloss/core.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
|
__init__(tokenizer: PreTrainedTokenizer, digit_level: bool = True, reweigh: bool = True, loss_function: Callable = F.mse_loss)
¶
Referred to as NTL-L_p in the paper.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer
|
PreTrainedTokenizer
|
NTLTokenizer with necessary attributes like is_number_token etc. |
required |
digit_level
|
bool
|
Whether to ensure only digits are considered number tokens, stabilizing training with NTL. Defaults to True. Used for most experiments in the ICML paper. |
True
|
reweigh
|
bool
|
Whether to scale the NTL using the logit weight on number tokens. Defaults to True. NOTE: The ICML paper does not use this option which can lead to incorrect loss if most mass is placed outside of the number tokens. |
True
|
loss_function
|
Callable
|
Function to apply on the delta between the ground truth number and the obtained dot product (nt-probs * token-values). Defaults to MSE, but MAE, Huber etc are also compatible. |
mse_loss
|
Source code in ntloss/core.py
setup_max_dist()
¶
Set up the maximum distance between the number tokens based on the selected loss function.
Source code in ntloss/core.py
predict_numbers(logits: FloatTensor) -> Tuple[FloatTensor, FloatTensor]
¶
Calculates token-level numerical prediction. NOTE: This calculates numerical predictions for all tokens, not just where label is a number token.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logits
|
FloatTensor
|
3D FloatTensor of shape BS x T x V. |
required |
Returns:
Name | Type | Description |
---|---|---|
yhat |
FloatTensor
|
2D FloatTensor BS x T containing numerical predictions. |
nt_mass |
FloatTensor
|
2D FloatTensor BS x T with the cumulated mass assigned to all number tokens. |
Source code in ntloss/core.py
forward(logits: FloatTensor, labels: LongTensor, loss_weights: Optional[Tensor] = None, reduction: str = 'mean', ignore_index: int = -100) -> Tensor
¶
Computes the NTL based on the dot product between token values and their probs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logits
|
FloatTensor
|
3D Tensor of shape BS x T x V. |
required |
labels
|
LongTensor
|
2D Tensor of shape BS x T. |
required |
loss_weights
|
Optional[Tensor]
|
2D Optional tensor of BS x T with token-wise loss weights. |
None
|
reduction
|
str
|
Optional string specifying the reduction to apply to the output. Defaults to "mean", options are "mean", "sum", "none". |
'mean'
|
ignore_index
|
int
|
The token ID to ignore in the labels. Defaults to -100. |
-100
|
Returns:
Type | Description |
---|---|
Tensor
|
Loss tensor 0-D if reduction=="mean"|"sum" BS x T if reduction=="none" |
Source code in ntloss/core.py
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
|
NTLoss
¶
Bases: AbstractNTLoss
Class for Wasserstein-based NTLoss. This is the default in the ICML paper.
Source code in ntloss/core.py
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
|
__init__(tokenizer: PreTrainedTokenizer, digit_level: bool = True, reweigh: bool = True, squash_factor: Optional[float] = None)
¶
NTL constructor for the Wasserstein-based NTLoss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer
|
PreTrainedTokenizer
|
Any HuggingFace tokenizer. |
required |
digit_level
|
bool
|
Whether to ensure only digits are considered number tokens, stabilizing training with NTL. Defaults to True. Used for most experiments in the ICML paper. |
True
|
reweigh
|
bool
|
Whether to scale the NTL using the logit weight on number tokens. Defaults to True. NOTE: The ICML paper does not use this option which can lead to incorrect loss if most mass is placed outside of the number tokens. |
True
|
squash_factor
|
Optional[float]
|
The optional squashing factor for the NTL. If provided, this number denotes the factor by which predicting the largest number token is worse than predicting the closest incorrect number token. E.g., with digit-level tokenization this factor is 9. Setting this to 1 will recover cross entropy. This argument is intended to handle irregular vocabs with large numerical token values. |
None
|
Source code in ntloss/core.py
setup_distance_lookup(squash_factor: Optional[float] = None) -> None
¶
Set up a lookup table for the distances between the number tokens. Use squash_factor to control by what factor the farthest number token is worse than the closest, incorrect number token. If not squash_factor is not set: with 10 number tokens (0-9), the squashing factor is 9. NOTE: With a squashing factor of 1, this basically collapses to cross entropy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
squash_factor
|
Optional[float]
|
The optional squashing factor used. |
None
|
Source code in ntloss/core.py
forward(logits: FloatTensor, labels: LongTensor, loss_weights: Optional[Tensor] = None, reduction: str = 'mean', ignore_index: int = -100) -> Tensor
¶
Computes the NTL.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
logits
|
FloatTensor
|
3D Tensor of shape BS x T x V. |
required |
labels
|
LongTensor
|
2D Tensor of shape BS x T. |
required |
loss_weights
|
Optional[Tensor]
|
Optional 2D tensor of BS x T with token-specific weights. |
None
|
reduction
|
str
|
Optional string specifying the reduction to apply to the output. Defaults to "mean", options are "mean", "sum", "none". |
'mean'
|
ignore_index
|
int
|
The token ID to ignore in the labels. Defaults to -100. |
-100
|
Returns:
Type | Description |
---|---|
Tensor
|
Loss tensor 0-D if reduction=="mean"|"sum" BS x T if reduction=="none" |
Source code in ntloss/core.py
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
|
ntloss.utils¶
ntloss.utils
¶
is_number(something: Any, finite: bool = True) -> bool
¶
Check whether something is convertible to a float
Parameters:
Name | Type | Description | Default |
---|---|---|---|
something
|
Any
|
something to test for float casting. |
required |
Returns:
Type | Description |
---|---|
bool
|
Whether or not it's a number |